
Reading Between the Lines
A Speculation on Material Implications of Hovering Thumbnails on
YouTube

Yann Martins

This text is a recount of exploring the algorithmic intricacies of hovering interactions on
YouTube video thumbnails. The explorative debugging practice used offers a glimpse into the
material implications of hovering, seeing it as a form of exploited labor. Each hover activates
a convoluted set of instructions resulting in hardcoded values for what is considered
productive and unproductive hovering.

Critical Debugging is a critical aspect of my practice and research. I investigate the
mechanisms behind data manufacture on social media platforms, setting YouTube as my case
study. By examining the processes through which data is produced within such digital
environments, the research aims at shedding light on the intricate dynamics of social media
platforms as sites of data production. This text offers a speculation on the material implication
such algorithmic processes might have.

Several scholars refer to the production of data through interactions with social media and
other online interfaces as modes of extraction.[1] Hence, laptop, smartphone and tablets are
the sites for data production. Yet finding the exact places—or lines of code—where data is
extracted requires a careful reading of technical, and critical, papers describing how
YouTube’s recommender system works.[2] This helps us understand where to look to identify
such places when visiting https://youtube.com. [https://www.youtube.com/]

In my practice, the primary objective was to develop an understanding of how data is
manufactured at an algorithmic level. Achieving this required repurposing debugging tools in
unconventional ways. These tools are available on any browser and provide an extensive suite
of capabilities, including network analysis and code inspection. Debugging tools can halt code
execution, reveal variable contents, and, crucially, display the entirety of the code running on
the device in use. These tools are commonly employed by web developers for error correction
in the process of developing a website. This functionality makes them instrumental for
examining the underlying mechanisms of data manufacture.

Drawing on insights from the technical and critical papers cited above, it became feasible to
navigate and interpret YouTube’s codebase effectively. By employing a combination of
methodologies, including network analysis, stack tracing, and logging, a focused investigation
over several months led to the identification of one data production site within YouTube’s
codebase: Hovering

https://brand-new-life.org/b-n-l/reading-between-the-lines/pdf#_edn1
https://brand-new-life.org/b-n-l/reading-between-the-lines/pdf#_edn1
https://www.youtube.com/

Annotating Hovering[3]

/**
 * This annotated code demonstrates how
 * hover interactions are captured.
 * It specifically tracks when a user
 * hovers over a video thumbnail,
 * triggering a preview of the video content.
 */

e.hideThumbnail = function () {
 ///
 ///
 this.data &&
 this.data.enableHoveredLogging &&
 this.logEvent('INTERACTION_LOGGING_GESTURE_TYPE_HOVER');
 // ???????????????????????????????
 // here the data production starts
 this.removeVideoPreview()
 ///
 ///
};

The code above shows the capturing of hover data in https://www.youtube.com
[https://www.youtube.com/s/desktop/1857023c/jsbin/desktop_polymer_inlined_html_polymer_flags.vflset/desktop_polymer_inlined_html_polymer_flags.js]

The annotated code snippet above combines machine-readable algorithms with human-
readable explanations. Human-readable text is often marked with double slashes (//) for
shorter comments or enclosed within /***/ for more detailed notes. You can see the latter

https://brand-new-life.org/b-n-l/reading-between-the-lines/pdf#_edn2
https://www.youtube.com/s/desktop/1857023c/jsbin/desktop_polymer_inlined_html_polymer_flags.vflset/desktop_polymer_inlined_html_polymer_flags.js
https://www.youtube.com/s/desktop/1857023c/jsbin/desktop_polymer_inlined_html_polymer_flags.vflset/desktop_polymer_inlined_html_polymer_flags.js

style used in the opening lines of the snippet for longer explanations.

This explanation serves both as a guide to understanding the code and an invitation to explore
it more deeply. By revisiting the snippet, you can focus on the annotations and engage with
them as an integral part of the text, enhancing your understanding of the code’s structure and
purpose.

/**
 * line 107813
 * this is the logging function
 * it computes the hovering time
 * and then sends this information
 * back to YouTube servers as data
 */

e.logEvent = function (a) {
 if (!(0 >= this.loadingStartTimeMs)) {
 var b = {
 isMovingThumbnail: this.hasVideoPreview
 };

 ///
 // from here the code becomes a bit more readable
 // and it hints at the calculation of how much time
 // the user spends hovering over a thumbnail

 if (this.hasVideoPreview && 0 < this.startTimeMs) {
 var c = this.loadingEndTimeMs - this.loadingStartTimeMs;
 0 < c && (b.movingThumbnailLoadingDurationMs = Math.round(c));

 /**************************
 * calculating hovering time
 **************************/

 b.durationHoveredMs = Math.round(Hj() - this.startTimeMs)

 // ???
 // here the amount of time of hovering is computed
 ///
 ///
 }
 this.videoId && (b.videoId = this.videoId);
 this.csn &&
 this.trackingParams &&
 GRa(this.csn, mo(this.trackingParams), a,
 {
 thumbnailHoveredData: b
 // ???
 //here the measurement of hovering time is saved
 });
 this.startTimeMs =
 this.loadingEndTimeMs =
 this.loadingStartTimeMs = - 1;
 this.hasVideoPreview = !1
 }
};

The two code snippets above are just a minuscule part of the extensive codebase that
YouTube runs on users’ browsers. The first part shows how a log event is triggered:
this.logEvent('INTERACTION_LOGGING_GESTURE_TYPE_HOVER').
The second part shows what happens within the logEvent function. The latter computes the
amount of time that the user has been hovering over a thumbnail. It saves that data together
with the video ID and then sends it over the network back to YouTube’s servers.

The code above describes how an action like hovering could be captured and rendered as
datapoints. However, for it to be recognized as form of labour, and thereby justify terms like
data extractivism, something more needs to happen. First there is the need to acknowledge
that data is a commodity that is sold, and that its production requires labour.[4] Sociologist
Christian Fuchs describes labour within the digital realm in line with Marxist materialism. In

https://brand-new-life.org/b-n-l/reading-between-the-lines/pdf#_edn1
https://brand-new-life.org/b-n-l/reading-between-the-lines/pdf#_edn1

his view, within labour there is an important separation: necessary labour time and surplus
labour.[5]

These two terms separate the moment in which a worker exceeds the threshold of working
hours. This threshold defines an economic boundary that separates the number of hours a
worker needs to work for their own salary, and the number of working hours that become
productive for the employer, producing surplus value. That is, of the 8-hour workday in
Western countries the first 4 hours of work might cover the salary and infrastructural
expenses of an employer, while over the remaining 4 hours workers produce value for the
employer.[6]

Zooming out from a regular company and zooming into the algorithm annotated above an
obvious question to be asked of the algorithm is: when does the algorithm become
productive? That is, how much time should one be hovering to create a surplus for YouTube.

Hard coding the boundaries of surplus value production

f.then(function () {
 var h = Ak() - b,
 // hard coded values within YouTube hovering
 // recognize labour: below are the hardcoded values
 // for when hovering is productive and when it is not
 /**
 * I want to draw attention to two values 500 and 600000.
 * In computer coding jargon, they are called hard coded values.
 * They are immutable.
 * Usually, hard coded values are what programmers try to avoid,
 * except for specific purposes, like the one shown below.
 */
 l = qj('minimum_duration_to_consider_mouseover_as_hover', 500),
 // half second
 m = qj('max_duration_to_consider_mouseover_as_hover', 600000);
 // 10 minutes

 /**
 * This leads to a paradoxical situation where all
 * analysed code variables were obfuscated
 * by using combinations of 2 ~ 3
 * letters (see for example “l = qj(...)”)
 * in place of proper naming conventions.
 * And yet here where more secrecy would be expected
 * there is no use of variables,
 * and the strings are human readable.
 * ~~~
 * And this readability clearly gives away what is happening
 * in a few lines of code.
 * A value related to hovering over a video thumbnail is
 * measured against these hardcoded values.
 * It makes a difference whether the user is hovering for more
 * than 1/2 second [500ms] or less than 10minutes [600000ms].
 * ~~~
 * Those two values represent two hard boundaries,
 * for what is considered a «mouseover» event, as the strings
 * in clear view are telling us.
 * ~~~
 * Given the infrastructural magnitude of YouTube,
 * it is fair to assume that such hard coded values
 * are not casual.
 * And so, those values left so visible for everyone to read must
 * represent the measurements for what can be considered productive,
 * and unproductive, hovering over thumbnails.
 * They define hard thresholds «to_consider_mouseover_as_hover»,
 * describing a timespan of productive data production.
 */

 h = Math.round(h);
 l > h || m <= h ||
 (l = a.getScreenLayer ? a.getScreenLayer():void 0, l=so(l)||'',
 m = aI($H.getInstance(), a),
 BRa(l, a.visualElement ? a.visualElement : mo(m),
 'INTERACTION_LOGGING_GESTURE_TYPE_HOVER', {
 hoverData: {

https://brand-new-life.org/b-n-l/reading-between-the-lines/pdf#_edn1
https://brand-new-life.org/b-n-l/reading-between-the-lines/pdf#_edn1

 durationHoveredMs: h
 }
 }));

Within these two temporal boundaries, hovering can be understood as a specific form of
interaction that contributes to the production of surplus value. These boundaries delineate the
timeframe during which a user’s activity actively supports the platform’s profitability. It can
be speculated, for instance, that hovering for less than 500 milliseconds may not generate
sufficient engagement to offset the costs associated with server infrastructure. Conversely,
extended hovering—exceeding 10 minutes—could potentially impact the platform’s revenue
model to such an extent that it might influence broader organizational outcomes, such as
staffing decisions for software developers or even leadership changes at the executive level.

And so, a final question lingers: are those code snippets just algorithms, or do they represent a
contract between users and platform owners?

It is through the—aforementioned—(joyfully) catastrophic speculations that this question
could be partially answered. Not so much in the sense that those algorithms really represent a
contract. But rather this idea of the contract should be understood symbolically as to represent
those algorithms describing when gestures on an interface are considered as labour.

Code from FaceBook.com, found with students during a Counter Data Practices class in 2019

[1] The term extraction unfortunately implies the notion that data exists as raw material, that
of course is not true. See Jathan Sadowski, «When data is capital: Datafication, accumulation,
and extraction.» in: Big Data & Society, 6(1), 2019.
https://doi.org/10.1177/2053951718820549;
Yet the term offers a good way to analyze the labour relations, with emphasis on the
exploitative aspects that extractive practices employ. See Shoshana Zuboff, The age of
surveillance capitalism: The fight for a human future at the new frontier of power (First
edition). New York: PublicAffairs, 2019; Sandro Mezzadra & Brett Neilson «On the multiple

https://brand-new-life.org/b-n-l/reading-between-the-lines/pdf#_ednref1
https://doi.org/10.1177/2053951718820549

frontiers of extraction: Excavating contemporary capitalism.» in: Cultural Studies, 31(2-3),
185–204, 2017. https://doi.org/10.1080/09502386.2017.1303425

[2] Paul Covington, Jay Adams & Emre Sargin, «Deep Neural Networks for YouTube
Recommendations.» in: Proceedings of the 10th ACM Conference on Recommender Systems,
191–198. Boston, Massachusetts, USA: ACM, 2016.
https://doi.org/10.1145/2959100.2959190; Karin van Es, «YouTube’s Operational Logic:
‹The View› as Pervasive Category.» in: Television & New Media, 21(3), 223–239, 2020.
https://doi.org/10.1177/1527476418818986; Sophie Bishop, «Anxiety, panic and self-
optimization: Inequalities and the YouTube algorithm.» in: Convergence, 24(1), 69–84, 2018.
https://doi.org/10.1177/1354856517736978

[3] What follows is a refined and polished re-enactment of my code annotation process during
my debugging practice. These annotations were instrumental in helping me trace the exact
steps the code takes to capture user’s hovering interactions.

[4] Jathan Sadowski, «When data is capital: Datafication, accumulation, and extraction.» in:
Big Data & Society, 6(1), 2019. https://doi.org/10.1177/2053951718820549; Shoshana
Zuboff, The age of surveillance capitalism: The fight for a human future at the new frontier of
power (First edition). New York: PublicAffairs, 2019; Sandro Mezzadra & Brett Neilson «On
the multiple frontiers of extraction: Excavating contemporary capitalism.» in: Cultural
Studies, 31(2-3), 185–204, 2017. https://doi.org/10.1080/09502386.2017.1303425

[5] Christian Fuchs, Digital Labour and Karl Marx. New York: Routledge, 2013.
https://doi.org/10.4324/9781315880075

[6] ibid.

YANN MARTINS

Yann Martins is a debugger and researcher currently working at IXDM. His software
practices lie at the intersection of debugging, computer music and game design. He is
currently working on his doctoral thesis, in which he investigates debugging practices and
browser performances as forms of data poisoning.

This contribution is licensed under the CC-BY-NC-ND License 4.0 International (Creative
Commons, Attribution, Non Commercial, No Derivatives). Images and videos integrated into
the contribution are not included in the CC BY-NC-ND License. For any use not permitted by
legal copyright exceptions, authorization from the respective copyright holders is required.

© Brand-New-Life, 2025

doi.org/10.5281/zenodo.10.5281/ze

https://doi.org/10.1080/09502386.2017.1303425
https://brand-new-life.org/b-n-l/reading-between-the-lines/pdf#_ednref2
https://doi.org/10.1145/2959100.2959190
https://doi.org/10.1177/1527476418818986
https://doi.org/10.1177/1354856517736978
https://brand-new-life.org/b-n-l/reading-between-the-lines/pdf#_ednref2
https://brand-new-life.org/b-n-l/reading-between-the-lines/pdf#_edn1
https://doi.org/10.1177/2053951718820549
https://doi.org/10.1080/09502386.2017.1303425
https://doi.org/10.1080/09502386.2017.1303425
https://doi.org/10.1080/09502386.2017.1303425
https://doi.org/10.4324/9781315880075
https://doi.org/10.4324/9781315880075
https://doi.org/10.1080/09502386.2017.1303425
https://doi.org/10.1080/09502386.2017.1303425

